The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains.

نویسندگان

  • P V Pedone
  • J G Omichinski
  • P Nony
  • C Trainor
  • A M Gronenborn
  • G M Clore
  • G Felsenfeld
چکیده

The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic determination of the thermodynamics of cobalt and zinc binding to GATA proteins.

Vertebrate GATA proteins regulate processes that are vital to development, and each possesses two tandem GATA finger domains: an N-terminal GATA finger and a C-terminal GATA finger. These GATA fingers require Zn(2+) to fold, to bind DNA recognition elements, and to regulate transcription. While the GATA-1 C-terminal finger is necessary and sufficient to bind to single GATA DNA sites, the N-term...

متن کامل

Direct analysis of native and chimeric GATA specific DNA binding proteins from Aspergillus nidulans.

In Aspergillus nidulans the regulatory gene areA is responsible for mediating nitrogen metabolite repression. The areA product (AREA) represents an example of the GATA family of DNA binding proteins, which are characterised by the presence of a GATA domain consisting of a zinc finger within a highly conserved region of 52 amino acids. Among the other transcription factors included in this famil...

متن کامل

Determinants of GATA-1 Binding to DNA

Mammalian GATA transcription factors are expressed in various tissues in a temporally regulated manner. The prototypic member, GATA-1, is required for normal erythroid, megakaryocytic, and mast cell development. This family of DNA-binding proteins recognizes a consensus (A/T)GATA(A/G) motif and possesses homologous DNA binding domains consisting of two zinc fingers. The C-terminal finger of GAT...

متن کامل

Key residues characteristic of GATA N-fingers are recognized by FOG.

Protein-protein interactions play significant roles in the control of gene expression. These interactions often occur between small, discrete domains within different transcription factors. In particular, zinc fingers, usually regarded as DNA-binding domains, are now also known to be involved in mediating contacts between proteins. We have investigated the interaction between the erythroid tran...

متن کامل

The solution structure of a fungal AREA protein-DNA complex: an alternative binding mode for the basic carboxyl tail of GATA factors.

The solution structure of a complex between the DNA binding domain of a fungal GATA factor and a 13 base-pair oligonucleotide containing its physiologically relevant CGATAG target sequence has been determined by multidimensional nuclear magnetic resonance spectroscopy. The AREA DNA binding domain, from Aspergillus nidulans, possesses a single Cys2-Cys2 zinc finger module and a basic C-terminal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 1997